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Abstract: In this paper, we analyze the effect of vaccination on the dynamics of infectious diseases using a 

simplified SIR model with a vaccination compartment. We have obtained results about the stability of the disease-

free and endemic equilibria of the model. Analytical and numerical simulations show that when the basic 

reproduction number (R0) is less than one, the disease free equilibrium is stable and becomes unstable when R0 > 1 

giving rise to a stable endemic equilibrium. The importance of vaccination to a susceptible population is 

highlighted. 
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1.   INTRODUCTION 

Vaccination models like the one we propose in this paper is a veritable tool in the fight against infectious diseases. A 

susceptible population timely vaccinated will usually develop immunity against the disease for which the vaccine is 

developed. In the WHO bulletin, Andre et al [1] acknowledges that only clean water performs better than vaccination in 

the reduction of the burden of infectious disease in a population. An estimated 20.3 million deaths were prevented by the 

measles vaccine alone between 2000 and 2015[2].  

Modelling the effect of vaccination on the transmission dynamics of infectious diseases in a population can help interpret 

the trial result and generalize the findings to the long term impact of vaccination on the population at various coverage 

levels (see [3 - 10]).  

In this paper, we have adapted a classical SIR epidemiological model consisting of the infectives (I), the susceptibles (S) 

and recovered (R) by adding a vaccination compartment (V) to have an SIVR model. We have shown that if R0 < 1 then 

the disease free equilibrium is locally asymptotically stable and when R0 > 1, then the endemic equilibrium is locally 

asymptotically stable. Numerical simulations support our analytical calculations and also show that we have global 

asymptotic stability of the disease free equilibrium for R0 < 1 and the endemic equilibrium for R0 > 1. The paper is 

organized as follows: The model is described in Section 2. The basic reproduction number and relevant results for the 

stabilities of the disease free and endemic equilibria could be found in Section 3. We have numerical simulations in 4 and 

conclusion in Section 5. 

2.   DERIVATION OF THE MODEL 

We consider a deterministic model that incorporates a vaccination compartment to the classical SIR epidemic model. 

Individuals are assumed to be in one of the following epidemiological states: Susceptibles (at risk of contracting the 

disease), Infectives (infected and capable of transmitting the disease), Vaccinated (population vaccinated and are immune 

to the infection) and Recovered (those that have recovered from the infection). All recruitment is into the susceptible 

class, and occurs at a constant rate β. A susceptible individual has an average  I contacts that would be sufficient to 
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transmit the disease. Thus, the rate at which susceptibles in the population are infected is  SI. Susceptible individuals are 

vaccinated at a constant rate   and are removed to the vaccination compartment. We present the model as follows: 

     

  
                                 

     

  
                                                                                                                     

     

  
                                                                                                                        

     

  
                                                         

The rate of infection is represented by  , while recovery rate is represented by ϒ. This model has the death rate,   which 

represent death rate as a result of natural causes. In developing the model, we have taken into consideration the fact that 

vaccinated individuals lose the effect of the vaccine at a constant rate σ to become susceptible again. Since this model is 

for human population, we assume that all its state variables and parameters are nonnegative for all t  ≥ 0. The region 

biologically relevant is given by 

  {            
            

 

 
}                                                                           

The total human population is given by N = S + I + V+ R, so that           , thus       as     . The first 

three equations of system (1) do not depend on the last equation, it suffice to analyse the following system: 

     

  
                                 

     

  
                                                                                                                      

     

  
                                                                                                                         

3.   STABILITY ANALYSIS 

The basic reproduction number for the model is given as 

   
       

                    
                                                                                                                    

The disease-free equilibrium given by               is the only equilibrium for R0 ≤ 1, where 

   
      

        
              

  

        
                                                                                              

If R0 > 1, then there is also a unique endemic equilibrium given by E*= (S*, I*, V*), where 

   
   

 
                                                                                                                                     

    
                              

              
                                       

   
      

      
                                                                                                                              

 

3.1 Local Stability of the Disease Free Equilibrium. 

The characteristics equation after linearizing (1) about the disease free equilibrium E
0
 gives 
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This gives 

                    and                                    

The first two eigenvalues λ1 and λ2 are negative and if R0 < 1, λ3 is also negative giving us the following theorem. 

Theorem 1. 

The disease-free equilibrium point of the system is : 

(i) locally asymptotically stable when R0  < 1,  

(ii) marginally stable when R0  = 1 and  

(iii) unstable when R0  > 1. 

3.2 Local Stability of the Endemic Equilibrium 

We analyse the local stability of the endemic equilibrium point in this section. The characteristics equation at the endemic 

equilibrium point E* gives 

                                                                                      

                                                                            

                                                                            

                                                                        

                     

This simplifies to 

   
     

                                                                                                     

Where 

                                                                                                                                                                 

                                                             

                                                   

                                                                            

Lemma 2. 

          whenever R0 > 1. 

 

Proof:                                                                     

                                                                    

                                                                 

                                                                                                                                                        

 

Equation (9) is greater than 0 whenever R0 > 1. Hence          .                                                                

From Lemma 2, (8) satisfy the Routh Hurwitz stability criterion whenever R0 > 1, hence all roots of the characteristic 

equation (7) have negative real parts. This gives rise to the following theorem. 

Theorem 3.  

The endemic equilibrium point (E*) of the system is locally asymptotically stable whenever R0 > 1. 
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4.   NUMERICAL SIMULATION 

We show numerically the established results in earlier sections about the stability of the disease free and the endemic 

equilibria of the model as it relates to the basic reproduction number (R0). The importance of vaccination to a susceptible 

population is highlighted and the plot of the infectives for different values of the vaccination rate has suggested a 

minimum vaccination rate and vaccine loss rate to target in a vaccination campaign. We use the ode23 suite in Matlab to 

simulate system (2) with the parameters as shown below the figures. The parameters are chosen solely for simulation 

convenience and do not reflect actual collected data. 

 

 

 

 

In figure 1(a), R0 = 0.39803 < 1, hence the disease free equilibrium becomes stable which shows that the infection dies 

out of the population. Figure 1(b) shows the stable endemic equilibrium for R0 = 2.0504 > 1, this means that the disease 

will persist in the population. This simulation agrees with theorems (1) and (3). 

In the next figure, we show the effect the vaccination rate ( ) has on the dynamics of system (1) by plotting the 

vaccination rate against the steady states of the infectives in fig 2(a), and the number of infectives with varying 

vaccination rate and in fig 2(b). 

 

 

 
 

5.   CONCLUSION 

We conclude that the system developed and analysed in this paper give a good mathematical model to study the effect of 

vaccination in a population and could be used with actual data collected from endemic regions for the purpose of strategic 

planning and control of infectious diseases. Targeted vaccination on a population could provide an effective tool in the 

control of an epidemic as could be seen in fig. 2 (a) and (b). The infection was eradicated at the choice of the vaccination 

rate at a threshold value showing that we need not vaccinate everybody in a given population before controlling an 

epidemic. 

(b)  𝜅  [ .   .  ] 
(a)  𝜅    .   .    .   .    Figure 2: Simulation of the evolution of the infected individuals for different values of 

vaccination rate 𝜿. Other parameters are: β = 0.8, μ = 0.58, φ = 0.75, ϒ = 0.15 and σ = 0.5. 

(b) R0 = 2.0504 > 1, 𝜙 = 0.85 (a) R0 = 0.39803 < 1, 𝜙 = 0.165 

Figure 1: Other parameters are: β = 0.8, μ = 0.5, κ = 0.04, ϒ = 0.14 and σ = 0.6. 
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